Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.477789

ABSTRACT

The widespread SARS-CoV-2 in humans results in the continuous emergence of new variants. Recently emerged Omicron variant with multiple spike mutations sharply increases the risk of breakthrough infection or reinfection, highlighting the urgent need for new vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x), which showed high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine comprised of STFK and STFK1628x elicited high titers of broad-spectrum antibodies to neutralize all 14 circulating SARS-CoV-2 variants, including Omicron; and fully protected vaccinees from intranasal SARS-CoV-2 challenges of either the ancestral strain or immune-evasive Beta variant. Strikingly, the vaccination of hamsters with the bivalent vaccine completely blocked the within-cage virus transmission to unvaccinated sentinels, for either the ancestral SARS-CoV-2 or Beta variant. Thus, our study provides new insights and antigen candidates for developing next-generation COVID-19 vaccines.


Subject(s)
COVID-19 , Breakthrough Pain
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.10.439161

ABSTRACT

Although vaccines have been successfully developed and approved against SARS-CoV-2, it is still valuable to perform studies on conserved antigenic sites for preventing possible pandemic-risk of other SARS-like coronavirus in the future and prevalent SARS-CoV-2 variants. By antibodies obtained from convalescent COVID-19 individuals, receptor binding domain (RBD) were identified as immunodominant neutralizing domain that efficiently elicits neutralizing antibody response with on-going affinity mature. Moreover, we succeeded to define a quantitative antigenic map of neutralizing sites within SARS-CoV-2 RBD, and found that sites S2, S3 and S4 (new-found site) are conserved sites and determined as subimmunodominant sites, putatively due to their less accessibility than SARS-CoV-2 unique sites. P10-6G3, P07-4D10 and P05-6H7, respectively targeting S2, S3 and S4, are relatively rare antibodies that also potently neutralizes SARS-CoV, and the last mAbs performing neutralization without blocking S protein binding to receptor. Further, we have tried to design some RBDs to improve the immunogenicity of conserved sites. Our studies, focusing on conserved antigenic sites of SARS-CoV-2 and SARS-CoV, provide insights for promoting development of universal SARS-like coronavirus vaccines therefore enhancing our pandemic preparedness.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423552

ABSTRACT

A safe and effective SARS-CoV-2 vaccine is essential to avert the on-going COVID-19 pandemic. Here, we developed a subunit vaccine, which is comprised of CHO-expressed spike ectodomain protein (StriFK) and nitrogen bisphosphonates-modified zinc-aluminum hybrid adjuvant (FH002C). This vaccine candidate rapidly elicited the robust humoral response, Th1/Th2 balanced helper CD4 T cell and CD8 T cell immune response in animal models. In mice, hamsters, and non-human primates, 2-shot and 3-shot immunization of StriFK-FH002C generated 28- to 38-fold and 47- to 269-fold higher neutralizing antibody titers than the human COVID-19 convalescent plasmas, respectively. More importantly, the StriFK-FH002C immunization conferred sterilizing immunity to prevent SARS-CoV-2 infection and transmission, which also protected animals from virus-induced weight loss, COVID-19-like symptoms, and pneumonia in hamsters. Vaccine-induced neutralizing and cell-based receptor-blocking antibody titers correlated well with protective efficacy in hamsters, suggesting vaccine-elicited protection is immune-associated. The StriFK-FH002C provided a promising SARS-CoV-2 vaccine candidate for further clinical evaluation.


Subject(s)
COVID-19 , Weight Loss , Pneumonia
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.22.215236

ABSTRACT

The ongoing COVID-19 pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and host ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, we generated a recombinant fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process. In ACE2-expressing cells, we found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.13.20153106

ABSTRACT

Objectives The prevalence of antibodies to SARS-CoV-2 among blood donors in China remains unknown. To reveal the missing information, we investigated the seroprevalence of SARS-CoV-2 antibodies among blood donors in the cities of Wuhan, Shenzhen, and Shijiazhuang of China. Design Cross-sectional study Setting Three blood centers, located in the central, south and north China, respectively, recruiting from January to April 2020. Participants 38,144 healthy blood donors donated in Wuhan, Shenzhen and Shijiazhuang were enrolled, who were all met the criteria for blood donation during the COVID-19 pandemic in China. Main outcome measures Specific antibodies against SARS-CoV-2 including total antibody (TAb), IgG antibody against receptor-binding domain of spike protein (IgG-RBD) and nucleoprotein (IgG-N), and IgM. Pseudotype lentivirus-based neutralization test was performed on all TAb-positive samples. In addition, anonymous personal demographic information, including gender, age, ethnicity, occupation and educational level, and blood type were collected. Results A total of 519 samples from 410 donors were confirmed by neutralization tests. The SARS-CoV-2 seroprevalence among blood donors was 2.29% (407/17,794, 95%CI: 2.08% to 2.52%) in Wuhan, 0.029% (2/6,810, 95%CI: 0.0081% to 0.11%) in Shenzhen, and 0.0074% (1/13,540, 95%CI: 0.0013% to 0.042%) in Shijiazhuang, respectively. The earliest emergence of SARS-CoV-2 seropositivity in blood donors was identified on January 20, 2020 in Wuhan. The weekly prevalence of SARS-CoV-2 antibodies in Wuhan's blood donors changed dynamically and were 0.08% (95%CI: 0.02% to 0.28%) during January 15 to 22 (before city lockdown), 3.08% (95%CI: 2.67% to 3.55%) during January 23 to April 7 (city quarantine period) and 2.33% (95%CI: 2.06% to 2.63%) during April 8 to 30 (after lockdown easing). Female and older-age were identified to be independent risk factors for SARS-CoV-2 seropositivity among donors in Wuhan. Conclusions The prevalence of antibodies to SARS-CoV-2 among blood donors in China was low, even in Wuhan city. According to our data, the earliest emergence of SARS-CoV-2 in Wuhan's donors should not earlier than January, 2020. As most of the population of China remained uninfected during the early wave of COVID-19 pandemic, effective public health measures are still certainly required to block viral spread before a vaccine is widely available.


Subject(s)
COVID-19 , Occupational Diseases
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.08.026948

ABSTRACT

The global pandemic of Coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable in vitro neutralization assay is very important for the development of neutralizing antibodies, vaccines and other inhibitors. In this study, G protein-deficient vesicular stomatitis virus (VSVdG) bearing full-length and truncated spike (S) protein of SARS-CoV-2 were evaluated. The virus packaging efficiency of VSV-SARS-CoV-2-Sdel18 (S with C-terminal 18 amino acid truncation) is much higher than VSV-SARS-CoV-2-S. A neutralization assay for antibody screening and serum neutralizing titer quantification was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and human angiotensin-converting enzyme 2 (ACE2) overexpressed BHK21 cell (BHK21-hACE2). The experimental results can be obtained by automatically counting EGFP positive cell number at 12 hours after infection, making the assay convenient and high-throughput. The serum neutralizing titer of COVID-19 convalescent patients measured by VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with live SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting receptor binding domain (RBD) of SARS-CoV-2-S were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.


Subject(s)
COVID-19 , Vesicular Stomatitis
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.23.20041707

ABSTRACT

Background Timely diagnosis of SARS-CoV-2 infection is the prerequisite for treatment and preventive quarantine. The serology characteristics and complement diagnosis value of antibody test to RNA test needs to be demonstrated. Method A patient cohort study was conducted at the first affiliated hospital of Zhejiang University, China. Serial sera of COVID-19 patients were collected and total antibody (Ab), IgM and IgG antibody against SARS-CoV-2 were detected. The antibody dynamics during the infection were described. Results The seroconversion rate for Ab, IgM and IgG in COVID-19 patients was 98.8% (79/80), 93.8% (75/80) and 93.8% (75/80), respectively. The first detectible serology marker is total antibody and followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 day post exposure (d.p.e) or 9, 10 and 12 days post onset, separately. The antibody levels increased rapidly since 6 d.p.o and accompanied with the decline of viral load. For patients in the early stage of illness (0-7d.p.o),Ab showed the highest sensitivity (64.1%) compared to the IgM and IgG (33.3% for both, p<0.001). The sensitivities of Ab, IgM and IgG detection increased to 100%, 96.7% and 93.3% two weeks later, respectively. Conclusions Typical acute antibody response is induced during the SARS-CoV-2 infection. The serology testing provides important complementation to RNA test for pathogenic specific diagnosis and helpful information to evaluate the adapted immunity status of patient. It should be strongly recommended to apply well-validated antibody tests in the clinical management and public health practice to improve the control of COVID-19 infection.


Subject(s)
COVID-19
10.
Journal of Chinese Physician ; (12): E001-E001, 2020.
Article in Chinese | WPRIM (Western Pacific), WPRIM (Western Pacific) | ID: covidwho-6169

ABSTRACT

At present, the prevention and control of the COVID-19 is still severe, its pathogen SARS-CoV-2 is highly infectious and pathogenic, and the population is generally susceptible. In order to deal with the epidemic, selective operation can be postponed, but most of the patients with acute abdominal diseases are commonly in clinic, with acute onset and severe condition, and most of them are accompanied with fever and gastrointestinal symptoms, so emergency operation is needed.Under the condition of the current epidemic—COVID-19, it requires a higher standard to diagnose and treat patients with acute abdomen. The first step is to carry out procedures to identify whether the patient is infected or not. Those who are not infected can go through the normal treating procedures.For patients diagnosed with COVID-19 or suspected patients, the second step is to achieve classified diagnoses and treatments, and to adopt a treating plan that integrates TCM and western medicine.In order to protect patients and medical staff, the COVID-19 in hospital transmission must be avoided. For patients with COVID-19 who need emergency surgery, we must strictly comply with the hospital's protection regulations, closely coordinate the relevant departments of surgery, perform the three-level protection, operate in accordance with the principle of damage control in the negative pressure surgery room, and return to the isolation ward according to the prevention and control process after operation. For units without surgical conditions, patients should be transferred to hospital in time on the premise of maximum damage control, and patients must not be delayed for timely diagnosis and treatment due to the epidemic.

SELECTION OF CITATIONS
SEARCH DETAIL